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In a previous paper (Numer. Math. 39 (1982), 1-14), M. Gasca and J. I. Maeztu
used a geometrical method for the construction of the solutions of certain Hermite
and Lagrange interpolation problems in Rk

• In the present paper, the method is
generalized in two different ways: first, the interpolant is not assumed to be a
polynomial, and second. a parameter is introduced in order to render the method
more versatile.

1. INTRODUCTION

It is well known that Newton's representation of the Lagrange or Hermite
interpolation polynomial in one variable stems from the fact that the
polynomials

satisfy

i-I

'II;(x) = n (x - x;),
j=O

i ~ 1, 2,..., n, 1
(1.1 )

if i >j. (1.2)

This combined with a geometrical approach, enabled Gasca and Maeztu [3]
to solve a large number of Lagrange and Hermite interpolation problems in
several variables. The present paper relies heavily on the material in [31 and,
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therefore, we recall briefly the main ideas of that article. This is best
achieved by means of an example. Consider five points in R 2, such that three
of them, UOj,j = 0, 1,2, lie on a straight line ro, with equation ro= 0, and the
remaining two, u1j ' j = 0, 1, lie on a different straight line r l , with equation
r l = O. For each point uij' let rij = 0 be the equation of a straight line whose
intersection with ri is uij (Fig. 1). If the indices (i,j) are ordered
lexicographically, the functions 11100 = 1, 11101 = roo, 11102 = roorol ' 11110 = ro,
11111 = ror lO satisfy the following property

if (i,j) > (h, k), (1.3)

which is analogous to (1.2). Furthermore, if

(1.4 )

(this is the case depicted in Fig. 1), then the Lagrange interpolation problem
associated with the dataf(uoo),f(uol),f(u02),f(ulo),f(uJI) and the space

possesses a unique solution obtainable by a Newton-like recurrence.
In a more general setting, one deals with straight lines r i , rij and the

functions lIIij are given by

i-I j-I

lIIij= n rs n rit
s=O 1=0

(1.5)

(as usual, a product with an empty set of indices is taken to be one).
The situation where some of the points uij on the line r; or some of the

lines ri coincide, may be dealt with as a limit case of the simple situation
above. In analogy with the one-dimensional case that limit originates
Hermite problems.

)"
Ir"

~u,o

FIGURE I
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FIGURE 2

In this paper the straight lines r i = 0, rij = °are replaced by curves /; = 0,
/;j = 0, where /;, /;j are not necessarily polynomial. The "curved" case is
more difficult to analyse than its "straight" counterpart. On the one hand the
number of possible situations is considerably enlarged. On the other hand the
fact that the second derivatives of /;' /;j are not identically zero causes
additional problems. In order to guarantee (1.3), the functions lJIij are defined
by the formula

i-I j-I

lJIij = I I f~s n/;"
5=0 I~O

(1.6)

where the exponents es are positive integers. Figures 2 and 3 show how the
coincidence of two points uij on the curve /; gives rise to the inclusion of the
derivative in the direction of the tangent to /; as an interpolation datum.

There is another way in which the present article enlarges the versatility of
the method in [3]. This extension concerns the choice of the interpolation
space V. For instance, with the procedure of [3] the constant functions
always belong to V, since 1JI00 is always the function 1. The question emerges
of whether it is possible to allow more flexibility in the choice of V. We
answer this question in the affirmative. To illustrate this point, assume that
in the situation of the figure 1 we wish to interpolate at Uol' U02 ' U 10' U II

(i.e., the datum at uoo is removed) and we wish that V does not necessarily
contain the constant functions (i.e., 1JI00 is removed from the basis of V). In
the context of the present paper it is possible to achieve those goals by
setting a parameter a ij with aoo =°and aoI = a02 = a I 0 = a II = 1. Note that
the point uoo still plays a role in the construction of lJIij for (i,j) =1= (0,0),
because of the factors fo' foo.

An easy example of the wider range of applicability of the present

FIGURE 3
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technique when compared with that of [3] is given by the problem whose
only datum is

:~ (0,0).

This problem, solvable here, cannot be dealt with within the framework of
[3], where V = {constants} regardless of the choice of r i , rij'

Finally we study the relevance of the idea in [3] in the derivation of error
bounds.

An outline of the paper is as follows. Section 2 and 3 are devoted to the
presentation of the notations employed and to the definition of interpolation
system in R 2. This is a set of quadruples (/;, /;j' uij' aij)' from which the
basis {lfIu! of an interpolation space V and a set of interpolation data {Lhd
are derived in such a way that the associated problem is unisolvent and can
be solved by a Newton-like recurrence. This recurrence is presented in
Section 4, together with a remainder theory. Section 5 is devoted to some
refinements and Section 6 to the extension to R k, k *- 2, which presents no
further difficulty.

Examples are given throughout the paper. Additional examples together
with a more detailed treatment of the present material can be seen in [6] but
the omited proofs are rather simple. The reader is referred to [2] for other
applications of the method. For related material see [1,4,5,7,8].

Most but not all (cf. [3]) Lagrange or Hermite two dimensional problems
arise from an interpolation system. Note that the present technique starts
with an interpolation system and then generates the interpolation problem.

2. DEFINITIONS AND NOTATIONS

Let p = (a, b) *- (0, 0) be a vector in R 2. Iff is sufficiently regular at the
point U we denote

(2.1 )

k= 2, 3,....

DEFINITION 1. An interpolation system in R 2 is a set

(2.2)
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where
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(1) I is a set of indices

1= {(i,j), i=O, 1,...,n;j=0, 1,...,m(i)}

with n, m(i) E NU {Of, lexicographically ordered.

(2) /;,fu, are sufficiently regular real-valued functions of R 2.

(3) Uu is a point of R2 such that

(2.3)

/;(U jj ) =/;j(U u)=O.

(4) au is a constant that can take the values 0 or 1. It is assumed that
ajm(i) = 1 i = 0, 1,... , n, although this restriction is not essential

(5) If /;(uhd = 0 and ahk = 1 with i ~ h, then

V/; 1Uhk = grad/; IUhk *" O.

(6) If /;j(U ik ) = 0 and a ik = 1 with j ~ k, then

V/;j 1Uik *" O.

(7) If au = 1, the vectors V/; IU/j' V/;j lUI} are linearly independent.

Remark. It is possible to have/;, =/;2 for i l *" i2'/;lj, =/;2h for (i.,jl) *"
(i2,j2), etc. (See examples below.)

EXAMPLE 1. 1= {(O, 0), (0,1), (1,0), (1, I)}.

I" _ 2 2 )/00 = y - 2, uoo = (0, 2), a oo = 1
JO-xy -x

101 =y - 1, UOI = (1,1), a OI = 1

j
/lO = x, ulO = (0, 2), a lO = 0

II=x+y-2
III = y - 2, U II = (0, 2), a II = 1.

Let us denote

If = {(i,j) E I Iau = I}. (2.4)

Both the number of interpolation data and the dimension of the interpolating
space constructed below equal the cardinal of If. We address first the
construction of the space.

For every (i,j) E If we define two integers tu and Pu given by:

if j = 0, then tiO = PiO = 0;

if j > 0, then tu (resp. pu) is the number of functions/;h with h <j such
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thatJ;h(uij,) = 0 and VJ;h lu .. is linearly dependent (resp. linearly independent)
iJ

on the vector VJ; lu.'
Ii

Also, for every i such that (i,j) E [' we define

1 [ Pij 1 '\e· = max t·· + - + 1 ,
I jl (i.j)EI' IJ 2

(2.5)

where [z] denotes integer part of z. For convenience, we define e -I = O.

DEFINITION 2. The set of functions

R(S) = {lI'ij, (i,j) E ['},

where

(2.6)

(i,j) E I', (2.7)

is called the basis associated with S. As usual, we set f _1 =J;. _1 = 1.

EXAMPLE 2. The basis associated with the system of the example 1 is

R(S) = {I, Y - 2, (xy 2 - x 2 )x},

since

[' = {CO, 0), (0,1), (1, I)}

and too = Poo = tOI = POI = 0, eo = 1. We denote 5lJ(S) = span R(S). Once
more, for every (i,j) E [' we write:

if j = 0 then T iO = Pio = 0;

if j> 0 then Tij (resp. Pij) is the sum of the eh such that h < i,
fh(Uij') = 0 and Vfh lu is linearly dependent (resp. linearly independent) on

Ii

the vector VJ; Iu'
Ii

We set

DEFINITION 3. The set of linear forms

'sp(S) = \Lij}(i.j)EI"

(2.8)

(2.9)

(2.10)
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(2.11 )

is called the set of data Y'(S) associated with the system S.

EXAMPLE 3. In the example 1 we have

Too = Poo = too = Poo = 0

To, = POI = tOI = POI = 0

Pi I = (-1, 1).

Hence

with

Loo(l) =1(0,2), Lo,(f) =1(1,1),

and

Later, the elements of Y'(S) are applied to the functions in B(S). Therefore
L ij(1/1hk) must make sense. Since 1/1hk is a product of functions It, Irs' it could
be required to differentiate them at some points Uhk , thus rendering necessary
the regularity assumed above.

3. INTERPOLATION PROBLEM ASSOCIATED WITH
AN INTERPOLATION SYSTEM IN R 2

Let S be a system in R 2
• We associate with S the following interpolation

problem

P E .'B(S), Lij(p) = zij

where Lij E Y'(S) and zij E R V(i,j) E /'.

V(i,j) E If (3.1 )
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THEOREM 1. For any interpolation system in R Z
, the determinant

det(L ij( l/Ihk))U,j),(h,k) el"

43

(3.2)

(3.3)

with rows and columns lexicographically ordered, is triangular and different
from zero.

Proof The proof uses repeated, careful application of the Leibniz
formula

aa n a! n a13y;
-an/;= 2: n-ap i=1 13=lal PI1Pz!'" Pn! i=1 ap13

j

and cannot be reproduced here because of its length. The interested reader is
referred to [6].

COROLLARY 1. B(S) is a basis for g(S) and the linear functionals Lij
are linearly independent on g(S).

Remark. Of course, the theorem remains true if Pu' Pij are replaced by
any nonnull scalar multiple. Thus, for example (4,0) is ussually replaced by
(1,0), (2,2) by (1, 1), etc.

EXAMPLE 4. In Example 1

1 0 0

detLij(l/Ihk)= -1 -1 0

o 0 4

COROLLARY 2. For any Z = (zij I(i,j) E I') E R eardl
', the problem (3.1)

has a unique solution. This solution can be obtained by solving a triangular
linear system.

EXAMPLE 5. In Example 1, if Zoo = 1, ZOI = 0, Z II = -1, we have
aoo = 1, aOI = 1, all = -1/4.

4. A FORMULA FOR THE REMAINDER

Let us consider zij = Lij(f). Then the problem (3.1) consists of finding
l/I E g(S) such that

V(i,j) E I' (4.1 )

and we say that l/I is the interpolating function offin the space g(S) for the
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problem (3.1). The difference f - lfI is called the remainder of the inter­
polating function

E(S;f)(x,y) =f(x,y) -lfI(x,y).

The coefficient au of lfIu in lfI can be denoted by

[
{lfIhk,(h,k)EI'} If]

au = {L w (h, k) E I'} I (i,j)

(4.2)

(4.3)

and called [2,6] divided difference (i,j) of f with respect to the problem
(3.1 ).

We have the formula

where (i,j) is the element which follows (r, s) in I', and

\'hrs = ap/lfIp/'
(P.t)E['

(p,t) «r,s)

(4.4)

(4.5)

Thus au does not depend on either the element of B(S) or the elements of
Y'(S) with index greater than (i,j). Therefore instead of (4.3), we can
employ the alternative notations

[
{lfIhk' (h,k)EI',(h,k)< (i,j)} I[ f ] (4.6)

au = {L hk , (h,k)EI',(h,k)< (i,j)} (i,j)'

Let us call

[
{{lfIhk' (h, k) E I', (h, k) < (i,j)},f}]

V {L hk , (h, k) El', (h, k) <(i,j)}

the determinant which results from the application of

{L hk , (h, k) El', (h, k) ~ (i,j)}

lexicographically ordered to the functions

{{lfIhk' (h,k)EI' , (h,k) < (i,j)},f},

where f is the last element.
With this notations we can write

(4.7)

( - L l{lfIhk,(h,k)EIf,(h,k)~(i,j)} II f] () (4.8)
lfI x,y) - (i.j)EJ' {L w (h, k) E I', (h, k) ~ (i,j)} (i,j) lfIu x,y
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'II(x,y) = L
(i,})EI'

(4,9)
V [{{'IIhk,(h,k)EI

I
, (h,k) < (i,j)},f}] ..(x ).

X {Lhk,(h,k)EI',(h,k)~(i,j)} 'III] ,Y

Let (x, y) be the point at which we wish to compute £(S;/), and let us
assume that J;, i = 0,..., n do not vanish at (x, y). We construct another
system S adjointing to S the element

(/n+"/n+l,o' un+l,o' an+l,o) = (x-1',y- y, (1',y), 1), (4.10)

leading to

ljij} = 'IIij <4 V(i,j) E I'

Lij = Lij <4 V(i,j) E /'

Ln+l,o(f) =/(1',y)

and hence

B(S)=B(S)U {ljin+l.o}

.c£'(S)=.c£'(S)U {Ln+l,o}'

Let lji be the interpolating function of/associated with S. We have

lji='II+an+I.O'lln+I,O'

where

(4.11 )

(4.12)

(4.13 )

(4.14)

V(i,j) El'. (4.15)

Since

L n+1,0(lji) = lji(1',y) = Ln+I,o(f) = f(1', y),

we can write

£(S;/)(1',y) =/(1',y) - 'II(1',y) = lji(1',y) - 'II(1',y)

= an+1,0 ljin+ 1,0(1', y)
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or also

E(S;j)(x,j) = 1 v[ {{If!ij,(i,j)El'},j} ]. (4.17)
TIU,j)EI' Lij(lf!ij) {{Lij' (i,j) E l'}, L n + I,O}

Formula (4.16) is a generalization of the error formula j[xo,'''' x n ' xl
TI7=0 (x-x;) in one variable, and formula (4.17) can be written also in the
form

v[ {{If!ij,(i,j)EI'},j} ]
{{Lij, (i,j) E I'}, L n+ 1,0}

v [ {If!ij' (i,j) E l'} ]
{Lij' (i,j) E I'}

(4.18)

which is another version of the same formula, which uses determinants, and
is well known in one variable.

These expressions hold except at the points at which some of the /; vanish,
In this case, if j and If!ij's are continuous in R 2 it is possible to obtain
E(S;f)(x,y) by continuity.

5. SOME PARTICULAR CASES IN WHICH

THE EXPONENTS ei CAN BE DECREASED

There are some particular cases in which the value of ei can be decreased.
For example, let us consider the case

Vi < n. (5.1)

The function In is not required to be of this form.
Let us now denote, for i = 0, 1,..., n,

e· = max {t .. + l}.
I jl U,j)EI' I}

Then we have

(5.2)

THEOREM 2. Let /;, Vi < n, be as in (5.1). Then, theorem 1 remains true
when ei is given by (5.2) rather than by (2.5).

The proof is quite similar to that of Theorem 1.
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Let us remark that, in systems of the type (5.1), if every hi' j = 0,... ,
m(i) - 1 (when m(i) > 1), has gradient linearly independent from that ofh at
every U ik , (i,k)EI', then

e i = 1 Vi.

The systems considered in [3] are a particular case of these systems, with hi
also as in (5.1). In [3] one had I' =/, that is au = 1 V(i,j).

Theorem 2 solves a large number of interpolation problems in R 2

satisfying the following condition:

Condition H. If the value of one derivative of order s of 1 at a point
U E R 2 is an interpolation datum, then the other s derivatives of 1 of the
order s at u, must also be given as interpolation data.

This condition is satisfied by most of the usual interpolation problems in
finite element methods.

The proof of this fact can be found in [6]. We now give an example that
cannot be solved with the tools given in [3], but can be solved by using the
present techniques because it satisfies condition H.

EXAMPLE 6. Let us consider three non aligned points Ai = (xi,Y;) in R 2.
Any interpolation problem with a set of data

(5.3 )

verifies condition H.

r,(x,y) = (y - y,)(x2- XI) - (x - XI)(Y2 - Yl)

r2(x, y) = (y - Y2)(X3- x2) - (x - X2)(Y3 - Y2)

r3(x, y) = (y - Y3)(X 1 - x3) - (x - x3)(Y, - Y3)'

If we take

/ = {CO, 0), (0,1), (0,2), (0, 3), (0,4), (1,0), (1,1),

(1,2), (2,0), (2,1), (2, 2), (3, D)}

640/42/14

100 =101 =102 = r 3 ,

UOO = U01 = U02 = A I' U 02 = U 04 = A 2
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a OO = 0,

ulO =A 2

a OI = 1

f20 = r 2

we have a system S with Y(S) equivalent to (5.3) as it is easiiy seen. The
interpolating space ,~(S) is a subspace of dimension 9 of the space of
polynomials of degree ~4.

Of course, the functions/;, /;j are usually polynomials, and one would like
to get ,~(S) = IIn , space of polynomials of degree non greater than n. One
has the following result:

THEOREM 3. Let S be a system with/;'/;j polynomials, au = 1 VU,j) E I
and card I = (n + 1)(n + 2)/2. Then gj(S) = IIn iff/;, /;j are linear functions

/;(x,y) = aix +biy + ci Vi < n

/;ix,y)=aux+bijy+cij' i=O,l,...,n,j<m(i),

mU) = n - i Vi, and ei is given by (5.2) for i < n.

Remark. The theorem would not be true without the assumption that/;,
/;j are polynomials. In particular it does not hold if/;, /;j are allowed to be
rational functions ([6).

6. INTERPOLATION SYSTEMS IN R I AND R 3

The theory above can be easily adapted to cover interpolation III one
variable: we define an interpolation system in R 1 as a set of triples

(6.1 )



INTERPOLATION SYSTEMS IN R k

where

(1) 1= {O, 1, , n};

(2) J;, i = 0, , n are sufficiently regular real valued functions of R.

(3) Xi is a point of R such thatJ;(x;) = 0.

(4) ai is a constant that takes the values °or 1.

(5) IfJ;(xj ) = °and aj = 1 with i ~j then

dJ;
dx (xj ) * 0.

We now denote:

49

For every i E l' we define an integer number t;:
if i> 0, then ti is the number of functions fj, with j < i, such that

fj(x;) = 0,
if i = 0, then to = 0.

We can define the associated basis B(S)

B(S) = {'I';};El' (6.2)

with

(/_1=1) (6.3)

and the associated set of data

SI'(S) = {L;};El'

with

In this setting the result of theorem 1 holds. The proof is very simple.

EXAMPLE 7. When

J;(x)=x-x;, i<n,

and

(6.4)

a; = 1, i= 0,..., n,
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and the method provides the usual Newton formula, even for coincident
points Xi'

EXAMPLE 8. We now present an example, concerning trigonometrical
interpolation. Let xo,"" x 2m E la, a + 21t) be 2m + 1 points. Let us assume
that

Take

Xi-Xi*- 1t Vi,j E 1= {O, 1,..., 2m}. (6.5)

J;(X) = sin(x - Xi)' i = 0, 2, 4,... , 2m,

()
sin((x - x i)/2)

J; X = , i = 1,3,... , 2m - 1,
cos((x - X i _ I )/2)

and a i = I Vi. If all the points are different, the resulting problem is that of
Lagrange. If a point appears s times, we have s derivatives (till(s - 1)th
order) as data at the point (Hermite interpolation). ,~(s) is the space of
trigonometrical polynomials of order m, Pm(sin X, cos x).

We have the following Newton-like formula for the solution of the
trigonometrical Hermite (or Lagrange) interpolation problem:

)
, ( ) . X - X o . X - Xl

p(x = ao+ a, sm X - X o + a2 sm 2 . sm 2

X-Xo . X -Xl .
+ a3 sin 2 sm 2 sm(x - x 2) + ... (6.6)

(
2m-3 X-X,) 2m-I. X-Xi

+ a2m _, I1 sin -2-' sin(x - X2m - 2) +a2m Q sm -2-'

where the coefficients a i are easily computable by recurrence. By taking an
even number (2m) of data it is possible to get a space ~(S) such that

Pm_,(sinx, cosx)c,~(S)cPm(sinx,cos x).

The method can also be applied in R 3• We would consider sets

(6.7)

The two-dimensional results are extended without any further theoretical
difficulty [6], but the notations become more cumbersome.
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